

YOU ARE INVITED TO ATTEND THE DEFENSE OF THE DOCTORAL DISSERTATION

Newark, NJ 07103

"Lineage-Specific Insulin-Like Growth Factor 1 Receptor Deletion Reveals Protective Role in a Mouse Model of Basal-Like Breast Cancer"

By

Krystopher Maingrette
Molecular Biology, Genetics, and Cancer Program
University of New Haven B.S. Biology 2016
Rutgers University SGS-Newark M.S. Biomedical Sciences 2018

Thesis Advisor: Terri Wood, Ph.D.

Distinguished Professor and Rena Warshow Endowed Chair in Multiple Sclerosis
Rutgers New Jersey Medical School
Department of Pharmacology, Physiology & Neuroscience
Center for Cell Signaling

Friday, November 14th, 2025 11:00 A.M. Cancer Center, G-1196

Join Zoom Meeting

https://rutgers.zoom.us/j/98038918928?pwd=X1HU3N4UR6Xa0rpIb4xg2SPkYQn3ZN.1

Meeting ID: 980 3891 8928 Password: 570304

ABSTRACT

Breast cancer is the most diagnosed cancer in women, and most breast cancer-related deaths result from the metastatic spread of malignant cells to distant organs. Triple-negative breast cancer (TNBC), an aggressive subtype lacking estrogen receptor, progesterone receptor, and HER2 amplification, accounts for about 15% of breast cancer cases, but nearly one-third of breast cancer deaths due to its heightened metastatic potential. Defining the molecular mechanisms that drive this process remains a critical challenge.

The insulin-like growth factor (IGF) signaling pathway has traditionally been considered a positive mediator of tumor growth and invasion. Paradoxically, our laboratory previously found that reducing insulin-like growth factor 1 receptor (IGF1R) signaling in a Wnt1 oncogene driven mouse model of basal-like breast cancer increased tumor metastatic potential. IGF1R is expressed throughout the mammary epithelium but is most highly expressed in the basal-myoepithelial cell lineage. Thus, to further understand the function of IGF1R in mammary tumorigenesis, we generated a new mouse model where *Igf1r* was conditionally deleted in the basal-myoepithelial lineage (tamoxifen-inducible Keratin 5-CreER^T; *Igf1r*^{fl/fl}) and crossed that mouse with the Wnt1 tumor model (K5-*Igf1r* KO; Wnt1). Using this novel mouse model, we tested the hypothesis that loss of IGF1R in the basal lineage is sufficient to promote an aggressive phenotype in Wnt1-driven basal-like tumors.

Loss of *Igf1r* in the keratin 5 lineage in Wnt1-driven mammary tumors significantly delayed primary tumor formation and increased both the frequency and size of lung metastases. Flow cytometry revealed a reduction in basal cells and a trending increase in luminal progenitors. Consistent with this shift, tumorsphere assays indicated reduced progenitor expansion capacity. Spatial transcriptomics and Ingenuity Pathway Analysis identified Kras as an activated upstream regulator across epithelial, fibroblast, and immune compartments, suggesting enhanced oncogenic signaling following Igf1r loss. Consistent with this finding, Kras and Nras mutations were increased, while Hras mutations were reduced in the K5-Igflr KO; Wnt1 tumors. Epithelial-mesenchymal transition (EMT)-focused gene profiling revealed high upregulation of Zeb2, Sox10, and TgfB3 expression, and immunostaining further exhibited reduced E-cadherin expression. Taken together, these data support increased epithelial plasticity and invasiveness in the *Igf1r* deficient, Wnt1 tumors. Notably, analysis of the METABRIC breast cancer dataset demonstrated an inverse correlation between ZEB2 and IGF1R expression across both TNBC and estrogen receptor-positive tumors, supporting a clinically relevant connection linking low IGF1R to elevated ZEB2 and aggressive breast cancer. Analyses of the tumor microenvironment further revealed a reduction of fibroblasts and macrophages, reduced collagen I deposition, and decreased iNOS expression, consistent with an immune-evasive, metastasis-permissive environment in the K5-Igflr KO; Wnt1 tumors. Functionally, K5-Igflr KO; Wnt1 tumor cells exhibited enhanced adhesion to fibronectin and increased endothelial intravasation, without changes in migration.

Together, these findings demonstrate that basal-myoepithelial loss of *Igf1r* delays tumor initiation but reprograms epithelial and stromal compartments toward *Kras*-driven oncogenic signaling and *Zeb2*-mediated EMT, which enhances their metastatic potential. This work identifies a basal, myoepithelial lineage-specific mechanism linking reduced IGF1R activity to *Zeb2*-associated epithelial plasticity and breast cancer aggressiveness.